THIRD YEAR T.D.C., SCIENCE

PAPER-III, Part C

SOLID STATE, NUCLEAR AND PARTICLE PHYSICS

Typical Crystal Structures: Classification

The axes labelled as a, b, c
α, β, γ (angle between the axes)

There are seven different possible combinations of lattice parameters a, b, and c (axes), and α, β, γ (angle between the axes) the and each of this represents a distinct crystal system.

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	aaa
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c

Relation ships between the lattice parameters and unit cell geometry for the seven crystal systems

Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	aaaa
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	c a b
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	c a b
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	c B

Typical Crystal Structures: Classification

Typical Crystal Structures : Classification of lattice : The Seven Crystal Systems

CRYSTAL SYSTEM	CONVENTIONAL UNIT CELL
1. Cubic	$a=b=c, \alpha=\beta=\gamma=90^{\circ}$
2. Tetragonal	$a=b\neq c, \alpha=\beta=\gamma=90^{\circ}$
3. Orthorhombic	$a\neq b\neq c, \alpha=\beta=\gamma=90^{\circ}$
4. Hexagonal	$a=b\neq c, \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
5. Rhombohedral OR Trigonal	a=b=c, $\alpha = \beta = \gamma \neq 90^{\circ}$
6. Monoclinic	$a\neq b\neq c, \alpha=\beta=90^{\circ}\neq\gamma$
7. Triclinic	$a\neq b\neq c, \alpha\neq \beta\neq \gamma$

Typical Crystal Structures: Classification

CRYSTAL SYSTEMS

In addition, with the centering (face, base and body centering) added to these, 14 kinds of 3D lattices, known as Bravais lattices, can be generated

- In the cubic system, we have simple cubic, Body centered cubic (BCC), Face Centered Cubic (FCC).
- As shown in the figure, this refers to where the basis (atoms/molecules) are placed in the structure.
- For example, when we say Body Centered Cubic (BCC), it means that in addition to the atoms at the corners of the cube, there is also one at the body centre.

 In the tetragonal system, we have simple tetragonal and Body centered tetragonal (BCT

Typical Crystal Structures: Classification

CRYSTAL SYSTEMS

Typical Crystal Structures: Classification

CRYSTAL SYSTEMS

In summary :

- 3 for Cubic
- 2 for Tetragonal
- 4 for Orthorhombic
- 2 for Monoclinic
- 1 for Rhombohedral
- 1 for Hexagonal
- 1 for Triclinic

Adding up we have a total of 14 3D lattices, known as Bravais lattices

Coordination number and packing fraction : Definitions

To discuss crystalline structures it is useful to consider atoms as being hard spheres, with well-defined radii. Thus the shortest distance between two like atoms is one diameter.

0

- A. Coordination Number (CN) : It is the number of nearest neighbours that an atom has in a crystal structure.
- B. Nearest Neighbour distance : It is the distance between two nearest neighbours in a crystal
- C. Atomic packing factor (APF) or Packing fraction : It is the fraction of space occupied by atoms in a unit cell and is defined as the ratio of volume occupied by atoms in a unit cell to the volume of the unit cell.
- D. Thus, APF = Sum of atomic volumes/Volume of cell.

Coordination number and packing fraction

: Definitions

Additional Important properties of the unit cells are

- The type of atoms and their radii R.
- Cell dimensions (side a in cubic cells, side of base a and height c in HCP) in terms of R.
- n, number of atoms per unit cell. For an atom that is shared with m adjacent unit cells, we only count a fraction of the atom, 1/m. For example, in the figure above, in a simple cubic cell, since each of the atoms at each corner is in touch with eight other atoms, effectively, it is as 1/8.
- Therefore, the total number of atoms/unit cell, n = (1/8)x8 = 1

10

UNIT – 1 : CRYSTAL GEOMETRY

Coordination number and packing fraction

Unit Cell	n	CN	a/R	APF
SC	1	6	2	0.52
BCC	2	8	4√3	0.68
FCC	4	12	2√2	0.74
НСР	6	12		0.74

- The direction of closest packing also varies
- For example, The closest packed direction in a BCC cell is along the diagonal of the cube; in a FCC cell is along the diagonal of a face of the cube.

In the above figure, we can see that in a BCC structure, n=2because each of the corner atoms in a unit cell are shared by 8 other cells, whereas the one in the middle is not shared. Thus, $n=(1/8) \ge 8 + 1 = 2$